
Trading alerts Documentation
Release 0.1.0

Kaishi Zhou

May 11, 2021

CONTENTS:

1 Trading alerts 1
1.1 Why this project . 1

1.1.1 Learnings . 1
1.1.2 Features . 2

2 Installation 3
2.1 Development release . 3
2.2 From sources . 3

3 Internals 5
3.1 Architecture . 5
3.2 Execution model of data pipeline . 6
3.3 Dynamic dags . 7
3.4 Tickerdata package . 8
3.5 Progress . 9

4 trading_alerts.dags package 11
4.1 Submodules . 11
4.2 trading_alerts.dags.dynamic_historical_refresh module . 11
4.3 trading_alerts.dags.get_symbols module . 11
4.4 trading_alerts.dags.incremental_data_refresh module . 11
4.5 Module contents . 11

5 trading_alerts.plugins package 13
5.1 Submodules . 13
5.2 trading_alerts.plugins.custom_postgreshook module . 13
5.3 Module contents . 13

6 Indices and tables 15

Python Module Index 17

Index 19

i

ii

CHAPTER

ONE

TRADING ALERTS

This project intends to combine varying sources of OHLC financial data to provide a data-rich pipeline to automate
various trading needs. One of the intended outcomes is to provide realtime alerts indicating best time to buy or sell a
symbol (stock or crypto coin pair like bitcoin-usd).

As a minimum viable first version, this project intends to ingest cryptocurrency data with an Airflow pipeline and make
it available via a basic (most likely Plotly) dashboard and Telegram alerts. The dashboard will aid exploring the coins
and adding alerts to them. In this version, I intend to make RSI, TD-sequential and resistance/support line meteics
available.

In a future version, I wish to add more indicators as I explore other trading strategies. This project is intended for self
use but will be made available to small group of friends.

1.1 Why this project

Many such tools exist in the market which provide real time updates for a select set of traded signals. Majority of them
are either too expensive for an invdividual user (above 100$ per month) or are limited to a limited set of free indicators.
Both these factors were quite limiting for my use.

1.1.1 Learnings

1. Building dynamic graphs
Dynamic graphs are useful when your pipeline depends on varying number of inputs which cannot be fixed while
designing the pipeline. For example - a sensor that monitors for a new key in a S3 bucket and hands of the processing
to a new DAG once it finds that new file has been created. The use case for this project is discussed in more detail in
the `Internals`_ section.

Airflow provides a way to launch dynamic graphs via 3 operators - TriggerDagRunOperator, SubDagOperator, Exter-
nalSensor operator. I chose to create dynamic graphs using the SubDagOperator because of the following reasons:

The SubDagOperator creates a hierarchial relationship between parent and child-dags and makes them available on UI
via a drill down feature. So this not only allows you to glance at the parent dag status but also lets you “zoom-in” into
the status of children dags if you want to. Not only this, but to use SubDagOperator you need a dag factory (a function
or a file, which when executed returns a independent DAG) - this sort of brings it together for me.

TriggerDagRunOperator is ideal when you want to run a DAG independent of parent DAG once a condition is met and
state history should be shared between the dags. These dags are not grouped under a single view in the UI.

The other alternative is ExternalSensor. It is a special operator whose function is to keep polling for a condition till its
met or if it times out. These tend to occupy a worker till the conditoin turns true or operator times out.

So keeping all these things in mind, it was a better alternative to use SubDagOperator than the other two.

1

Trading alerts Documentation, Release 0.1.0

2. Historical and incremental DAGs
Inititally, I had thought of patiently polling the Binance API to collect the data. But I was skeptical of this approach
because I needed minutely data for at least 200 crypto symbols and I was sure I was going to be banned within a day
or two. (api limits to 1200 reqs per minute, with varying weightages of each API call)

Then I chanced upon historical archives of crypto data at 1m frequencies via https://data.binance.vision. I was actually
hoping that maybe there would an unauthenticated API, which would let me collect data (safely). But things turned out
better because after struggling through the HTML code I saw requests to S3 buckets. I was able to then take the bucket
name from the “XHR” request and use the AWS cli commands that we used in pset-4, 5 to list the bucket contents.
Turns out I could access the bucket without using AWS credentials! (yay.)

This is where I broke down the data collection architecture to use historical and incremental dags. Historical dags
would collect data for new symbols for which no data wasn’t collected earlier and incremental dags would come back
every few minutes to top up the minute-wise data for coins that already had (using the Binance API). I was able to
collect 1m interval data for about 5 coin pairs this way, which came around to 7Million rows of data.

3. Extending data upload in Postgres hooks
Airflow 2.0 does not have a data write functionality in its Postgres hooks yet. But, its possible to have this by grabbing
the base class’s connection URI and passing it to a pandas write statement. Having created as custom class around the
PostgresHook and placing it in the “plugins” folder, let’s you use it in any dag that may need it.

4. Postgres as a bookmark and a datastore
I use Postgres as the backend for Airflow pipeline. In this database, a symbol table keeps track of all symbols for which
data extraction is going on. The last_updated_at columns is updated whenever a historical or incremental dag pulls
data for the symbol. By keeping this column updated, the DAGs are able to calculate how many iterations of pulling
day-wise data would be required to keep under the API throttle limits. Once this pipeline matures in usage, it would be
easy to migrate it to Amazon’s Redshift database (as it is build on Postgres) with least changes as compared to other
databases like MySQL or MongoDB.

5. Idempotency
Airflow is an orchestration framework which does not provide options for idempotent operations for database or other-
wise, out of the box. It is upto the end developer to do this. I have used delete SQL statements to remove data from the
database before inserting into it. Architecturally, we only write to one table which holds data at 1m granularity, so the
table would ideally need partitioning based on closing timestamp and symbol name. This way it would be possible to
drop a partition and recreate it again - which as far as I’ve read is a better alternative than deleting select rows.

1.1.2 Features

• Automates data collection using Airflow. Internally, depends on Binance and Coingecko APIs

• Idempotent pipeline based on Airflow Postgres DB as backend

• Can scale by separating historical and incremental DAGs.

• Metadata about coin development pulled from Coingecko

2 Chapter 1. Trading alerts

https://data.binance.vision

CHAPTER

TWO

INSTALLATION

2.1 Development release

Clone repo and run pipenv install. This will install the necessary dependencies.

To setup metadata database: 1. Create Postgres metadata database

CREATE DATABASE airflow;

2. Create airflow user:

CREATE USER USERNAME WITH PASSWORD '<password>';
GRANT ALL PRIVILEGES ON DATABASE <database> TO USERNAME;

3. export AIRFLOW_HOME=$(pwd)

4. Run: airflow db init to create the base config (which needs sqlite only)

5. Now change sql_alchemy_conn variable to a postgres db connection string, for which connection parameters
were created above. And run: airflow db reset.

This should create the necessary metadata database for data collection to proceed.

2.2 From sources

The sources for Trading alerts can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/kai490952010/trading_alerts

Once you have a copy of the source, you can install it with:

$ python setup.py install

3

https://github.com/kai490952010/trading_alerts

Trading alerts Documentation, Release 0.1.0

4 Chapter 2. Installation

CHAPTER

THREE

INTERNALS

3.1 Architecture

PS: Completed sections are marked in non-grey color. Rest are work in progress.

The project can be separated into 3 python packages:

1. trading-alerts (current package) - this will contain the data pipeline package which will be fledged to collect and
enrich the data. Include trading indicator calculation.

2. technical-indicators - all Python methods which calculate indicators including the ones outline in the introduction
section will be housed here.

3. tickerdata - this will hold wrappers around APIs used for external data access. For example: with regards to crypto
currency data - Binance & CoinGecko APIs will be housed within this package.

5

https://github.com/kai490952010/tickerdata/tree/dev

Trading alerts Documentation, Release 0.1.0

3.2 Execution model of data pipeline

The first dag that is run is the get_symbols DAG which pulls the top 100 cryptocurrency symbols by market cap from
the coingecko API.

This table is updated daily (for now), and helps to capture a daily change in overall investment interest. If a crypto
currency suddenly gains public interest it will improve by market cap and if it ranks within the top 100, I’d be interested.

The last_updated_at column and minutely data stored in tickerdata_1m table is used to calculate whether histori-
cal/incremental DAG should be run for the symbol.

The historical DAG runs a SQL command to find symbols which are listed in the symbol table but do not have any rows
where tickerdata_1m.close_time is within the last month. It then hits the Binance S3 buckets to get monthly zip files
of 1m ticker data for each symbol and use our custom Postgres hook to write to the table. The last thing that the DAG
will do is update the last_updated_at column in the symbol table.

The incremental DAG will look at the last_updated_at column and calculate the number of Binance API requests that

6 Chapter 3. Internals

Trading alerts Documentation, Release 0.1.0

will be required to get data starting from last_updated_at timestamp to current timestamp. It then batches the jobs
and creates a Pandas dataframe which will then be written to database. Again, the incremental DAG will update the
last_updated_at column as well.

All timestamps in data processing are in UTC timezone.

3.3 Dynamic dags

Dynamic graphs are useful when your pipeline depends on varying number of inputs which cannot be fixed while
designing the pipeline. For example - a sensor that monitors for a new key in a S3 bucket and hands of the processing
to a new DAG once it finds that new file has been created.

Airflow provides a way to launch dynamic graphs via 3 operators - TriggerDagRunOperator, SubDagOperator, Exter-
nalSensor operator. I chose to create dynamic graphs using the SubDagOperator because of the following reasons:

The SubDagOperator creates a hierarchial relationship between parent and child-dags and makes them available on UI
via a drill down feature. So this not only allows you to glance at the parent dag status but also lets you “zoom-in” into
the status of children dags if you want to. Not only this, but to use SubDagOperator you need a dag factory (a function
or a file, which when executed returns a independent DAG) - this sort of brings it together for me.

TriggerDagRunOperator is ideal when you want to run a DAG independent of parent DAG once a condition is met and
state history should be shared between the dags. These dags are not grouped under a single view in the UI.

The other alternative is ExternalSensor. It is a special operator whose function is to keep polling for a condition till its
met or if it times out. These tend to occupy a worker till the conditoin turns true or operator times out.

So keeping all these things in mind, it was a better alternative to use SubDagOperator than the other two.

Using SubDagOperator a parent DAG can create sub-dag to create historical data extraction DAGs for each coin. These
are currently chained as I am operating in a laptop but could be run in parallel using a CeleryExecutor to reduce delays.

The above is a historical refresh for a coinpair taking place. Each sub DAG can be zoomed into the UI to see the
progression of tasks within as shown below -

3.3. Dynamic dags 7

Trading alerts Documentation, Release 0.1.0

Below are screenshots of the data pull logs from the Sub-Dag:

3.4 Tickerdata package

Structurally, this package will contain a separate Python file for each data source it incorporates and all common
functionality will exist modularised in a separate file.

In the cryptocurrency sub-module, two classes exist which provide different type of data - BinanceAPI and
CoingeckoAPI. The former’s structure is highlighted here.

class BinanceAPI():
def __init__(self):

pass

(continues on next page)

8 Chapter 3. Internals

Trading alerts Documentation, Release 0.1.0

(continued from previous page)

def get_historical(self, symbol, start_ts=None, end_ts=None, granularity='1m'):
pass

This class once instantiated will help get data between a start and end timestamp.

Similarly, a separate sub-module will be added for each of the NYSE and Shanghai stock exchanges.

3.5 Progress

Future versions of this package will include DAGs for dimensional modelling and indicator calculations. And, also a
FastAPI rest interface to easily build dashboards from.

3.5. Progress 9

Trading alerts Documentation, Release 0.1.0

10 Chapter 3. Internals

CHAPTER

FOUR

TRADING_ALERTS.DAGS PACKAGE

4.1 Submodules

4.2 trading_alerts.dags.dynamic_historical_refresh module

4.3 trading_alerts.dags.get_symbols module

4.4 trading_alerts.dags.incremental_data_refresh module

4.5 Module contents

11

Trading alerts Documentation, Release 0.1.0

12 Chapter 4. trading_alerts.dags package

CHAPTER

FIVE

TRADING_ALERTS.PLUGINS PACKAGE

5.1 Submodules

5.2 trading_alerts.plugins.custom_postgreshook module

5.3 Module contents

Top-level package for Trading alerts.

13

Trading alerts Documentation, Release 0.1.0

14 Chapter 5. trading_alerts.plugins package

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

15

Trading alerts Documentation, Release 0.1.0

16 Chapter 6. Indices and tables

PYTHON MODULE INDEX

t
trading_alerts.dags, 11
trading_alerts.plugins, 13

17

Trading alerts Documentation, Release 0.1.0

18 Python Module Index

INDEX

M
module

trading_alerts, 13
trading_alerts.dags, 11
trading_alerts.plugins, 13

T
trading_alerts

module, 13
trading_alerts.dags
module, 11

trading_alerts.plugins
module, 13

19

	Trading alerts
	Why this project
	Learnings
	Features

	Installation
	Development release
	From sources

	Internals
	Architecture
	Execution model of data pipeline
	Dynamic dags
	Tickerdata package
	Progress

	trading_alerts.dags package
	Submodules
	trading_alerts.dags.dynamic_historical_refresh module
	trading_alerts.dags.get_symbols module
	trading_alerts.dags.incremental_data_refresh module
	Module contents

	trading_alerts.plugins package
	Submodules
	trading_alerts.plugins.custom_postgreshook module
	Module contents

	Indices and tables
	Python Module Index
	Index

